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ABSTRACT: A Bayesian uncertainty analysis approach is developed as a tool for assessing and reducing un-
certainty in ground-water flow and chemical transport predictions. The method is illustrated for a site contam-
inated with chlorinated hydrocarbons. Uncertainty in source characterization, in chemical transport parameters,
and in the assumed hydrogeologic structure was evaluated using engineering judgment and updated using ob-
served field data. The updating approach using observed hydraulic head data was able to differentiate between
reasonable and unreasonable hydraulic conductivity fields but could not differentiate between alternative con-
ceptual models for the geological structure of the subsurface at the site. Updating using observed chemical
concentration data reduced the uncertainty in most parameters and reduced uncertainty in alternative conceptual
models describing the geological structure at the site, source locations, and the chemicals released at these
sources. Thirty-year transport projections for no-action and source containment scenarios demonstrate a typical
application of the methods.
INTRODUCTION

This paper presents a probabilistic alternative to the more
traditional calibration process of deterministic models used for
analyzing flow and transport at hazardous waste sites. In a
deterministic numerical analysis, the conceptual flow and
transport model is first specified, and then the model param-
eters are fine-tuned through calibration, a nonunique process
based on the comparison of selected model results and obser-
vations. The Bayes Monte Carlo (BMC) approach presented
herein is a structured method of using existing data to reduce
the uncertainty in both the conceptual models and the model
parameters. Similar to a typical calibration process, some de-
cisions involved in the application of the proposed BMC
method are not unique.

The BMC approach consists of two steps. First, suitable
conceptual models and the distributions of model parameters
are identified. This selection process is based on the best es-
timate that the model developer can provide prior to compar-
ing model results to actual observations. For each conceptual
model, multiple model realizations are generated at this stage,
by sampling the space of the model parameters following
Monte Carlo or other sampling techniques. The ‘‘prior’’ refers
to the distribution of the parameters and the model results at
this step. The a priori uncertainty of the problem is described
by the prior distribution of the model parameters and model
results, or suitable summary statistics, such as the parameter
standard deviations.

In the second step, the model results are compared with
existing observations through a structured probabilistic meth-
odology referred to as Bayesian updating. Although the
Bayesian updating methodology is well defined, the way in
which observations are compared with model results involves
an assessment and decisions that depend on how the actual
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field data are related to model predictions. These judgments
account for the fact that, by necessity, any model involves
simplification of real-world processes and some degree of spa-
tial and temporal aggregation. The procedure for comparison
and the resulting update are thus not unique. Alternative ap-
proaches for this comparison are discussed in detail in the
paper.

Once the Bayesian methodology is applied, an updated, or
posterior, probability is computed for each realization, given
the set of observations. At the end of the second step, these
calculated probabilities provide weights for both the model
parameters and the model results, combining the information
contained in the observed data with that of the prior estimates.
All reweighting occurs on the original set of simulations, so
no additional model runs are required at this stage; as a result,
additional observations can easily be incorporated in subse-
quent updating. The posterior distributions of model param-
eters and model results reflect the updated uncertainty.

The objectives of this paper are to provide details on the
development of the Bayesian approach and the decisions in-
volved in applying the methodology for ground-water site
characterization. Using data from an actual hazardous waste
site, this paper demonstrates that a BMC methodology pro-
vides an effective tool for characterizing uncertainty, and for
incorporating new information for the purpose of reducing this
uncertainty.

BACKGROUND

Many existing studies have addressed the problem of un-
certainty in modeling subsurface flow and transport phenom-
ena using inverse modeling (e.g., Yeh 1986) and optimization
(e.g., Marryott 1996). While significant, these studies focus
primarily on reducing uncertainty in model parameters and do
not address the combined uncertainty in conceptual models
and model parameters simultaneously. Monte Carlo techniques
(e.g., Essaid and Hess 1993) provide a natural method for
characterizing uncertainty in both conceptual models and
model parameters, but they do not provide a formal method
for comparing model predictions with field data. In addition,
when additional information on model parameters or field
measurements are gathered, new parameters must be reesti-
mated and model simulations recomputed. This can result in
a significant computational burden if ongoing data collection
occurs at a study site.

Bayesian statistical methods have been used to address these
difficulties in a variety of environmental applications (see
Sohn 1998 for a comprehensive review). In ground-water ap-
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plications, Bayesian methods have been used to incorporate
expert judgment in identifying and estimating initial uncer-
tainty estimates and the uncertainty reduction achievable fol-
lowing comparisons with observed field data (e.g., Loaciga
and Mari 1987; Reichard and Evans 1989; Massmann et al.ño
1991; James and Freeze 1993). While these studies have ad-
vanced the state of the art for uncertainty characterization and
reduction, their primary focus has been on the stochastic var-
iability and uncertainty associated with subsurface heteroge-
neity in hydraulic conductivity. They have not considered in
much detail the characterization of other significant chemical
and biological processes that control the dissolution, fate, and
transport of ground-water contaminants. As such, they have
not investigated the full range of geochemical and conceptual
model issues related to uncertainty in site characterization and
remedial system design. This work further develops the Bayes
Monte Carlo (BMC) method to update uncertainty, not only
in the hydrogeologic parameters describing ground-water flow
but also in the assumed geological structure of the site, the
location and characterization of the primary chemical sources,
and the chemical fate and transport parameters.

BAYES MONTE CARLO UPDATING

The traditional type of uncertainty analysis, where uncer-
tainties in model input parameters are routed through a pre-
dictive model using analytical or numerical (e.g., Monte Carlo)
methods, yields only a prior, or initial, assessment of uncer-
tainty. The BMC approach allows the prior to be updated to a
posterior probability using Bayes’ rule to account for the level
of agreement between model predictions and the observed
field data. The posterior probability of each realization of the
Monte Carlo simulation, given the observed data, is computed
as (Brand and Small 1995)

L(O uY )p(Y )k k
p9 = (1)k U

L(O uY )p(Y )i iO
i=1

where = posterior probability of the kth Monte Carlo sim-p9k
ulation; L(O uYk) = likelihood of observation O given the model
prediction Yk; p(Yk) = prior probability of the kth Monte Carlo
simulation; and U = number of the Monte Carlo simula-
tions. If many independent observations are considered, then
L(O uYk) in (1) represents the likelihood of observing all of the
observations simultaneously, i.e.

S

L(O uY ) = L(O uY ) (2)k s kP
s=1

where S = number of independent observations. The likelihood
function quantifies the difference between the observations and
the model output resulting from inherent variability, measure-
ment error, spatial and temporal averaging, and imperfect
model representation. For example, for unbiased measure-
ments with a normally distributed error, the likelihood of an
observation is given as

2
1 1 O 2 Yk

L(O uY ) = f (O 2 Y ) = exp 2 (3)k k S F G D2 s2ps εÏ ε

where = observation error variance. The posterior proba-2sε

bility, of each realization is applied to the full set of modelp9,k

assumptions and predictions associated with that realization,
including the input parameter vector (e.g., physical and chem-
ical model input parameters) and the conceptual model used
for that realization. Hence, this posterior probability can be
used to reestimate the uncertainty distribution for each com-
ponent of the model. The posterior mean, variance, and cor-
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relation coefficient of each model output and input parameter
are estimated from the posterior probability of each realization
as (Brand and Small 1995)

U

m9 = V ?p9 (4)V i iO
i=1

U

2 2s9 = (V 2 m9) ?p9 (5)V i V iO
i=1

U

(V 2 m9)(W 2 m9 ) ?p9i V i W iO
i=1

r9 = (6)V,W
s9 ?s9V W

where V and W represent any model input or output. The pos-
terior correlation coefficient, , provides insight into the pa-p9V,W

rameter correlations and the combinations that can yield sim-
ilar model output—e.g., parameters that affect the model
predictions in a similar manner tend to a negative correlation
induced, while parameters that have offsetting effects tend to
have positive correlation.

As ongoing information is obtained (e.g., following regular
field sampling events), the computed posterior from one round
of updating becomes the prior for the next, i.e., the p(Yi) in
the subsequent update is set equal to the from the previousp9k
update. So long as the original sampling provides full and
adequate coverage of the model and input parameter sample
space, the updating can be conducted without further evalua-
tion of the flow and transport models.

Method-Specific Issues

The selection of the appropriate error structure for the like-
lihood function is a key consideration for the BMC method;
it requires a careful consideration of the relationship between
the model predictions and the observed data. For example,
when the relationship is direct—i.e., when model predictions
and observed data are available at the same level of temporal
and spatial aggregation—then a likelihood estimate based on
field and laboratory measurement error is appropriate. In many
applications, the correspondence between observed data and
model predictions is less direct. For example, steady-state flow
models predict constant ground-water head and flow for con-
ditions of constant infiltration, recharge, and pumping. Simi-
larly, discretized models for contaminant transport yield rep-
resentative concentrations at the spatial scale of the grid,
ignoring finer-scale variations in environmental properties and
parameters, and the resulting finer-scale variations in concen-
tration. In these cases, the error variance in (3) must incor-
porate the effects of the unrepresented spatial and temporal
variations as well as the error associated with inaccuracy in
the measurement methods used to obtain the data. These issues
are exemplified by considering some of the decisions made in
the application presented in the second part of this paper: (1)
Coarse-scale flow models are used yielding predictions of hy-
draulic head and chemical concentration at points centered on
a 50 m grid spacing; (2) a single average value is computed
for all the existing head data within each grid cell, assuming
steady-state ground-water flow; and (3) chemical concentration
measurements and predictions are averaged within one-year
intervals. It is probable, however, that the significant variations
(especially for concentration) that are observed within a year
and at smaller spatial scale than that of the model grid are in
fact the dominant component of the error variance. In this
application, multiple samples within a year and within the
same cell indicate an error structure for the observed head that
is normally distributed, and an error structure for measured
chemical concentrations that is lognormal. For the latter, O



and Y in (3) correspond to the logarithms of the observed and
modeled values, respectively, and is the variance of the2sε

error of the logarithms. Methods for estimating are de-2sε

scribed in the application.
An additional complication arises from the independence

assumption, which is inherent in the use of (2). This assump-
tion, though commonly employed, is often inappropriate. Spa-
tial and temporal correlations in the observed data, model pre-
dictions, and the differences between them, can violate the
independence assumption, causing the information content of
an observed dataset to be reduced. Classical methods for test-
ing the hypothesis that the observed data are sampled from a
‘‘world in which the proposed model is true’’ account for this
by reducing the effective sample size of the test statistic (see,
e.g., Yevjevich 1972; Chapra and Reckhow 1983). In our ap-
plication, a similar approach is employed: the likelihood is
defined using statistics that represent the aggregate relationship
between the observed chemical data and the model, and the
effective sample size is adjusted to account for the spatial cor-
relation of the measured data.

Application-Specific Issues

Applications of the proposed methodology require decisions
specific to the phenomena studied and the available data. The
decisions involved in this ground-water flow and chemical
transport application offer to researchers and practicing engi-
neers several alternatives in implementing the methodology.
The large site studied in this application, which includes sev-
eral sources and is characterized by a considerable quantity of
varied field measurements, was discretized at a course scale (a
50 m grid). Each of the adjustments required to predict the
regional flow and transport processes using the small-scale
measurements are described in detail at each updating se-
quence. Noteworthy decisions include (1) conducting a two-
step update, the first for the head data and the second for the
chemical data; (2) using a ‘‘Bayes window’’ approach in the
head updating because the direct likelihood estimates given by
Eqs. (2) and (3) appeared to overly discriminate between sev-
eral well-fitting realizations; and (3) introducing an alternative
likelihood estimate in the chemical updating to account for
data correlations. The Bayes window and the alternative like-
lihood estimate both provide useful tools that should be eval-
uated on a case-by-case basis when implementing the BMC
methodology.

APPLICATION TO A CHLORINATED SOLVENT PLUME

Site Description

The BMC method is demonstrated for a site with multiple
sources of chlorinated hydrocarbons in ground water. The
study area (Fig. 1) includes four Superfund sites and is com-
prised of several industrial and federal facilities with chemical
sources contributing to a chlorinated solvent plume that ex-
tends over an area of approximately 3.7 3 0.9 km. Notable
features include many potential contaminant sources, which
can be grouped in three main source areas (SA-1, SA-2, and
SA-3), extensive paved areas that limit sampling (a portion of
a freeway and two aircraft runways), and a regional ground-
water flow gradient toward a nearby bay and wetlands. The
upper two of the four major permeable zones identified in
boring logs contain the vast majority of the contaminant mass.
The first layer is unconfined and the second layer is confined.
The available head data suggest significant hydraulic interac-
tion between these two aquifer zones.

Chemicals in SA-1 and SA-3 are not believed to have been
released until approximately 1960, while SA-2 sources are be-
lieved to have been active since approximately 1940. In 1987,
J

FIG. 1. Illustration of Study Site. Dotted Box Outlines Model
Area; SA-1, SA-2, and SA-3 Are Descriptive Labels for Source
Areas, with Black Squares Identifying Areas of Model Source
Cells; O-1 and O-2 Are Cells Where Model Predictions Are Plot-
ted and Compared with Observed Data; Contoured Lines Indi-
cate Observed Mean Head in Uppermost Permeable Zone

slurry walls were installed in SA-1 to prevent further migration
of contaminants from the source areas in combination with
localized pumping. The significant chemicals of concern at the
site include chlorinated hydrocarbons, in particular, trichloro-
ethylene (TCE) and 1,2-dichloroethylene (DCE). The presence
of dense, nonaqueous phase liquid (DNAPL) residuals is sus-
pected at various locations, which can be assumed to serve as
sources for the site plume. While TCE is known to have been
discharged from various site activities, it is not known whether
DCE was discharged at the source locations or is present in
the aquifer solely as a decay product of TCE degradation. Dis-
crimination between alternative source scenarios (i.e., source
type and source location) is one of the objectives of our anal-
ysis.

Overview of Modeling Procedure

The contaminant distribution in the two upper aquifers is
investigated using the ground-water flow model MODFLOW
(McDonald and Harbaugh 1988), coupled with the contami-
nant transport and fate model MT3D (Zheng 1992); both were
processed on UNIX-based workstations. The workstation pro-
cessing speed was approximately one-fourth the speed of cur-
rent personal computers so should not pose a significant com-
putational burden; our simulations required approximately one
week on four workstations.

A two-stage updating procedure was used to simulate the
uncertainty in the ground-water flow and contaminant trans-
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port. In the first stage, a prior characterization of the spatial
distribution of hydraulic conductivity was determined from
well-boring logs. An ensemble of equally likely hydraulic con-
ductivity fields was generated and subsequently updated using
head measurements. The second stage involved defining a set
of chemical transport parameters to represent the uncertainty
in source, dispersion, sorption, and reaction terms. Chemical
transport predictions were generated and subsequently updated
using chemical concentration measurements. The posterior
probabilities were summed across corresponding hydraulic
conductivity, source scenario, and chemical parameter sets to
determine the relative posterior support for the alternative
model assumptions and parameter values. These posterior es-
timates provide a basis for characterizing uncertainty in both
current conditions at the site and predicted future concentra-
tions.

Flow Model

The upper aquifer at the site was simulated as an unconfined
aquifer extending from approximately 10 m above to 5 m be-
low mean sea level (msl). The second aquifer was modeled as
a confined aquifer to a depth of 17 m below msl. The simu-
lation domain was discretized on a uniform 50 m square grid,
yielding 9,600 grid cells. Hydraulic conductivity estimates for
each grid cell in each of the two aquifer layers were derived
from 700 boring logs in and around the study area. Both di-
rectionally isotropic and anisotropic semivariograms were used
to characterize the spatial correlation structure of the hydraulic
conductivity. There is a higher degree of spatial correlation in
the longitudinal (north-south) direction than in the transverse
(east-west) direction, suggesting an anisotropic correlation
structure. Nonetheless, to consider alternative conceptual rep-
resentations of the subsurface geology and correlation struc-
ture, both isotropic and anisotropic hydraulic conductivity
fields were simulated for the site. Sequential Gaussian simu-
lation was used to generate 1,000 realizations for each of the
isotropic and anisotropic hydraulic conductivity structures.
The realizations were conditioned on the respective semi-
variograms and the observed hydraulic conductivity estimates
using the GSLIB software package (Deutsch and Journel
1992).

Updating Using Head Data

Fig. 1 illustrates the approximate steady-state head contours
from head measurements in the upper aquifer (Layer 1). Sim-
ilar values are observed in the second layer (Layer 2), as ex-
pected from their significant hydraulic connection. The deci-
sions involved in this application of the BMC methodology
include the following:

• The head updating was not conducted based on a com-
parison between measured and predicted head values. In-
stead, head gradients were estimated using pairs of the
head measurements and compared with those estimated
from model head predictions between the same locations.
This provides (1) a better aggregate assessment of the
regional flow, and (2) a more direct relationship to the
information used in the chemical transport predictions,
since it is the head gradients that are used to estimate the
Darcy velocities for the chemical transport, and not in-
dividual head values.

• If the difference between the model-predicted and the
data-estimated gradients was large, a minimum likelihood
value was assigned corresponding to the 95% range of the
Gaussian distribution rather than the estimated likelihood
value. As a result, any individual gradient comparison re-
sulting in a fit with less than 5% probability was assigned
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a 5% probability. This decision was made to avoid having
an extreme error in one likelihood estimate overshadow
the impact of the rest of the observations. This decision
can be justified by considering that these extreme errors
are more likely to result from a significant measurement
error than an error (of such magnitude) in the model pre-
diction.

• A ‘‘Bayes window’’ updating approach, described by
Franks et al. (1998) in their generalized likelihood uncer-
tainty estimation (GLUE) method, was used to identify
the most significant/likely realizations. In a window ap-
proach, only the realizations that have significant posterior
probabilities are kept and subsequently reassigned equal
posterior probabilities, while the others are discarded. In
our application, hydraulic conductivity fields with poste-
rior probabilities greater than 0.1% each fit the head data
well, and were retained for subsequent analysis. This ap-
proach is effective in cases where the updated probabili-
ties may overly discriminate between realizations that
each correspond comparably well with the measurements,
because of data correlations or spatial aggregation not
fully considered in the likelihood function. In the second-
stage updating using chemical data, an alternative likeli-
hood estimator is introduced.

The well pairs for gradient calculations were selected so as
to maximize the distance between the two wells both longi-
tudinally (north-south) and laterally (east-west), so that re-
gional gradient estimates were used in the updating. Each data
point was used once, yielding 165 gradient values in the first
aquifer and 66 values in the second aquifer. Likelihood esti-
mates for the updating were conducted using (1)–(6) with the
head variances estimated as the pooled error variance (see,
e.g., Weisberg 1985). That is, sε in (3) is computed as the
standard deviation of the head measurement in that cell for
each gradient pair. This error variance characterizes the error
from error in the measurements as well as the error associated
with comparing cell-averaged model predictions with field
measurements (or their statistics) from discrete points within
each cell.

Eight simulations, five isotropic and three anisotropic hy-
draulic conductivity realizations, encompassed 99.9% of the
posterior probability. While 95% of the posterior probability
was associated with only three of these realizations, the 99.9%
cutoff was chosen to include a larger range of variability in
the possible hydraulic conductivity fields. All eight of the re-
alizations appeared to fit the data well and were used for the
second stage of the updating procedure. Fig. 2 displays the
spatial distribution of hydraulic conductivity and the corre-
sponding head predictions for the upper layer for two of the
eight ‘‘second-stage’’ fields: one isotropic field [Fig. 2(a)] and
one anisotropic field [Fig. 2(b)]. The accepted isotropic field
appears similar in many respects to the accepted anisotropic
field, though the latter indicates a distinctly greater degree of
channeling (indicated by areas with light coloration, i.e., high
hydraulic conductivity) elongated in the north-south direction.

To further assess the selection of hydraulic conductivity
fields by the updating procedure, two additional fields were
also carried along to the second stage: (1) the mean hydraulic
conductivity field from the anisotropic subset of prior fields
[Fig. 2(c)]; and (2) a rejected realization (the hydraulic con-
ductivity field with the lowest posterior probability) [Fig.
2(d)]. The mean hydraulic conductivity field is much smoother
in its variation than any of the individual realizations since it
is on-average correct, but not reflective of the degree of var-
iation expected at the site. All 10 fields are assigned equal
prior probability for the subsequent comparisons of the chem-
ical predictions to the chemical data, in accordance with the



FIG. 2. Four of 10 ‘‘Second-Stage’’ Hydraulic Conductivity Fields and Corresponding Head Predictions: (a) Isotropic Field; (b) An-
isotropic Field; (c) Mean of 1,000 Anisotropic Field Priors; (d) Rejected Field
TABLE 1. Summary of Prior Uncertainty Distributions for
Chemical Transport Model

Parameter
(1)

Range
(2)

Distribution
(3)

Longitudinal dispersivity (=al) 0.1–100 (m) Uniform
Transverse/longitudinal dispersivity

ratio 0.025–1 Log-uniform
Vertical/longitudinal dispersivity

ratio 0.003–0.1 Log-uniform
Sorption coefficient (=Kd) 0.16–3.06 l/kg Log-uniform
Porosity 0.25–0.35 Uniform
Near-source TCE half-life 0.4–50 (years) Log-uniform
Far-source TCE half-life 0.4–50 (years) Uniform
Near-source DCE half-life 0.4–50 (years) Log-uniform
Far-source DCE half-life 0.4–50 (years) Uniform
Source area concentrations:

Area 1 TCE initial concentration 50–800 (ppm) Log-uniform
Area 2 TCE initial concentration 5–40 (ppm) Log-uniform
Area 3 TCE initial concentration 0.005–0.1 (ppm) Log-uniform
Area 1 DCE initial concentrationa 175–4,700 (ppm) Log-uniform
Area 2 DCE initial concentrationa 5–40 (ppm) Log-uniform
Area 3 DCE initial concentrationa 0.005–0.1 (ppm) Log-uniform
aApplies only to Scenarios 2 and 4, where DCE sources are present

(see Table 2).
J

Bayes window method. While introducing the two additional
fields does increase the uncertainty in the hydraulic conduc-
tivity fields for the second-stage analysis, it also allows an
evaluation of the robustness of the chemical transport updat-
ing, as described in the Results section.

Transport Model

The chemical transport model considers uncertainty in the
source, dispersion, sorption, and reaction terms. The prior un-
certainty distributions for the inputs to MT3D are summarized
in Table 1 and briefly described here. A comprehensive de-
scription of the model assumptions and parameters is presented
in Sohn (1998).

Dispersivity (a)

While the overall scale of the study area is 4 3 3 km, the
dispersivity parameters only describe the dispersion that is not
accounted for by the intercell heterogeneity in the hydraulic
conductivity field. For the model grid spacing of 50 m, the
longitudinal dispersivity is estimated to vary between 0.1 and
100 m.
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TABLE 2. Summary of Conceptual Model Uncertainty in Lo-
cation of Sources and Contaminants Released at These
Sources (All Scenarios Assigned Equal Numbers of Realiza-
tions and Thus Equal Prior Probability in Uncertainty Analysis;
Posterior Probabilities Estimated by Updating Prior Probabili-
ties Using Chemical Data)

Aquifer layer

Scenario

1 2 3 4

1 TCE TCE & DCE TCE TCE & DCE
2 none none TCE TCE & DCE

Prior probability 25% 25% 25% 25%
Posterior probability 24.9% 14.0% 45.7% 15.4%

Sorption Coefficient (Kd)

The same value of Kd is assigned to all grid cells and for
both TCE and DCE due to a limitation in the MT3D model
for sequential reaction modeling. A new MT3D model (Zheng
et al. 1997) is currently being developed to evaluate sequential
reactions in a direct manner so that this restriction will no
longer be necessary. Sorption parameters presented in Howard
et al. (1991) and Montgomery (1992), and estimated from lo-
calized field experiments conducted at the site (USEPA 1989),
indicate that these two chemicals do exhibit similar sorption
properties, suggesting that using the same Kd value for TCE
and DCE is a reasonable approximation.

Decay

First-order degradation is assumed for both TCE and DCE
transformation. All of the TCE degradation is assumed to re-
sult in formation of DCE. Separate degradation rates (and un-
certainty distributions) for cells near and far away from the
sources are used to account for the differences in degradation
rates applicable for high and low concentrations, anaerobic and
aerobic conditions, sorbed- and dissolved-phase degradation,
and possible cometabolic processes in the presence of cocon-
taminants. It is believed that close to the sources highly an-
aerobic conditions are possible, which can promote rapid de-
halorespiration (e.g., Nyer and Duffin 1997), while further
away from the sources, only mildly anaerobic and eventually
aerobic conditions can be expected.

In addition to parameter uncertainty, alternative contaminant
source scenarios are evaluated in order to determine whether
NAPL sources were present in both layers of the aquifer, and
whether primary DCE was included in these sources. Four
source scenarios, summarized in Table 2, are considered to
account for the uncertainty in the location of the sources in
the first and second aquifers and in the contaminants released
at the source, i.e., either TCE or both TCE and DCE. The four
source scenarios are assumed to be a priori equally likely. In
SA-1, separate phase TCE is believed to be present. The con-
centrations at SA-1 were assumed to range between 5 and 75%
of the aqueous solubility of TCE and DCE, and are consistent
with observed concentrations in the vicinity of the SA-1
sources. Source concentrations for SA-1 are reduced to zero
in 1987 to model the source containment activities at the site.
For SA-2 and 3, there is little evidence that DNAPLs are pres-
ent. However, the concentrations in these areas have not sig-
nificantly changed and little is known about the conditions of
the initial contaminant releases. Hence, constant strength
source terms are also used, at concentrations varying within a
range representative of the measured concentrations at the re-
spective source locations.

Bayes Update Using Concentration Measurements

The overall uncertainty is characterized by the 10 hydraulic
conductivity fields from the flow model studies (eight fields
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FIG. 3. Average Measured TCE Concentrations within Model
Cells for Year 1992 in Layer 1 (Circles Indicate Nondetect for All
Measurements in Cell)

from the head data update, the mean field, and a rejected re-
alization), the distributions of chemical transport and reaction
parameters in Table 1, and the four possible scenarios for TCE
and DCE sources in the upper and lower aquifers, summarized
in Table 2. Twelve hundred prior simulations of the MT3D
model are used, with 300 assigned to each of the four source
scenarios; each hydraulic conductivity field was allocated 30
of these 300. The parameter inputs from Table 1 are sampled
using Latin Hypercube sampling. Each of the 1,200 simula-
tions are assigned unique chemical transport and reaction pa-
rameters. Application-specific adjustments to the presented
BMC methodology include the following:

• Chemical data updating was conducted using data gath-
ered in the year 1986 and 1992. Although historical
records include many years (1982–1994), much of the
data are obtained at the same locations and are character-
ized by considerable temporal correlation as well, due to
the slow velocity of the plume. The year 1992 was se-
lected because this was the only year in which a compre-
hensive sampling program was conducted (Fig. 3). The
year 1986 was selected because it is sufficiently before
the 1992 sampling period to reduce the effects of the tem-
poral correlation, yet contained enough data for a reason-
able representation of the regional plume.

• Instead of a comparison between corresponding observa-
tions and model predictions, the likelihood function for
(1) is defined using two summary statistics—the pre-
dicted and observed mean concentrations and the corre-
lation coefficient between the predicted and observed con-
centrations. This approach is able to capture the essential
statistical features of the model-data comparison and to
account for the spatial correlation of the measurements.

The proposed likelihood measures are orthogonal, since
changes in one can occur without affecting the other; for ex-
ample, a linear transformation of the model (or the data) will
affect the difference in the mean but not the correlation co-



FIG. 4. Prior (a) and Posterior (b) Geometric Mean of TCE Pre-
dictions in Layer 1 at Year 1992 from All Simulations

efficient. The comparison to the mean ensures that the mag-
nitudes of the predicted plume concentrations are consistent
with those of the observed data; the correlation coefficient en-
sures that the predicted and observed plume shapes are con-
sistent.

The contribution of the mean to the likelihood function is
computed from the sampling distribution of the observed
mean, given that the mean of the model is true. This sampling
distribution is given by

2¯ ¯c ; Normal(c , s /N) (7)o m ε

where = mean of the observed natural logarithms (ln) of thec̄o

concentrations; = mean of the model predictions; = error2c̄ sm ε

variance; and N = sample size.
The sampling distribution of the correlation coefficient, r,

between the predicted and observed (ln) concentrations is
computed from the transformed variable
J

TABLE 3. Summary of Effective Sample Sizes of Available Da-
tasets after Spatial Correlation Is Taken into Account for Chem-
ical Data Update

Dataset
(1)

Number of samples
(2)

Effective sample size
(3)

TCE, Layer 1, 1992 225 20
TCE, Layer 2, 1992 145 11
DCE, Layer 1, 1992 131 5
DCE, Layer 2, 1992 61 9
TCE, Layer 1, 1986 143 29
TCE, Layer 2, 1986 92 13
DCE, Layer 1, 1986 108 23
DCE, Layer 2, 1986 59 7

FIG. 5. Time Series Plots of Prior (Dotted Lines) and Posterior
(Solid Lines) TCE Predictions of Median (50th Percentile of Un-
certainty Distribution) and 5th to 95th Percentile Credible Inter-
vals at Observation Points O-1 (a) and O-2 (b) (see Fig. 1); 5th
Percentile Credible Limit of Prior at O-2 (b) Is Not Plotted on
Log-Scale Axis Because Concentration Values Are Very Close
to Zero; Solid Circles Represent Measurements; Downward-
Pointing Arrow Represents Nondetection With Open Circle Tail
at Detection Limit

1 1 1 r
Z = ln (8)F G2 1 2 r

The sampling distribution of Z is approximated by (Hines and
Montgomery 1980, p. 384; Guttman et al. 1982, p. 368)

1 1 1 r 1
Z ; Normal ln , (9)S F G D2 1 2 r N 2 3
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where r = correlation coefficient between the predicted and
observed (ln) concentrations expected when the model fit is
‘‘perfect,’’ and only measurement errors (in the measurements
themselves) and errors due to the unmodeled spatial variability
within a grid cell contribute to differences between the model
and the data. This ‘‘perfect model’’ correlation coefficient is
computed as

1/22 2s 2 sc εor = (10)F G2sco

where = variance of the measured concentrations across2sco

the site.
Eqs. (7) and (9) include the sample size, N, in the calcula-

tion of their respective sampling distributions and variances.
However, correlations in the observed data, because of the
spatial pattern and slow movement of the concentration field
and the highly clustered sampling of the field, cause the sam-
pling distribution variances to be greater than the values com-
puted by these equations. This increase in variance can be
captured by replacing the actual sample size, N, with a smaller
effective sample size, Neff. The effective sample size reflects
the equivalent amount of independent information contained
in the dataset. It is calculated based on the increase in the
variance of the mean computed to occur when the concentra-
tion field is correlated compared with the case when the mea-
surements are independent (Rodrı́guez-Iturbe and Mejı́a 1974;
Bras and Rodrı́guez-Iturbe 1985). Details of this calculation
are found in Sohn (1998). Table 3 summarizes the resulting
effective sample sizes computed for the data used in the up-
dating. The effective sample sizes are much lower than the
actual number of samples in each case, because of the high
degree of correlation induced by a highly structured sampling
of a highly clustered concentration field (Fig. 3).

Results

The calculated mean value of the 1,200 prior predictions of
TCE concentration in Layer 1 in 1992 is shown in Fig. 4(a).
A posterior TCE plume is computed as the mean value of the
corresponding updated (i.e., posterior) predictions and is
shown in Fig. 4(b). Comparison of these two figures and the
measured TCE concentrations (Fig. 3) shows that the much
more elongated plume predicted as a result of the update is in
better agreement with the observed data. The shape and mean
concentrations of the prior and posterior TCE plumes in Layer
2 are similar to those in Layer 1, so are not illustrated here.
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The DCE predictions are also similar to those for TCE. Fig.
5 illustrates time series plots of TCE that summarize the his-
torical reconstruction of the TCE contamination and its un-
certainty at two locations along the major axis of the plume
(the locations are identified in Fig. 1). The median posterior
results of the model show better agreement with data at these
locations than at the priors. The uncertainty is also signifi-
cantly reduced, as reflected in the reduced width of the upper
and lower bounds of the posterior predictions.

Table 2 summarizes the results of the source scenario un-
certainty update. While a full discrimination among the sce-
narios is not achieved, the updating does favor Scenario 3
(TCE source in Layers 1 and 2 and no DCE source) as the
most likely of the release scenarios, followed by Scenario 1
(TCE in Layer 1 only, no DCE source). As such, the updating
favors a release scenario without DCE as a primary source.
While scenarios with no DCE source (Scenarios 1 and 3) have
50% prior probability, their posterior probability increases to
71% (24.9 1 45.7%). This is also consistent with the fact that
there are no recorded operations at the site that used significant
quantities of DCE. Additionally, the measured DCE was in
most cases solely the cis isomer, which is favored over the
trans isomer during TCE biodegradation (Gossett and Zinder
1997; Carr and Hughes 1998). This suggests that the observed
DCE is most likely present as a reaction byproduct of TCE
degradation.

Similarly, the updating tends to favor a source of TCE in
both the first and second aquifers. While the scenarios with
TCE sources in Layers 1 and 2 (Scenarios 3 and 4) have a
prior probability of 50%, their posterior probability increases
to 61% (45.7 1 15.4%). This is consistent with the observation
that at several locations in the vicinity of SA-1 and SA-2, the
concentrations of TCE are higher in the second aquifer than
in the first aquifer. Also, TCE concentrations greater than 10%
of its aqueous solubility, an indication of DNAPL occurrence,
are consistently detected over extensive areas in both the upper
and lower aquifers. Hence, the preference for scenarios with
sources in both aquifers—i.e., with DNAPL present in both
aquifers—is consistent with the field evidence.

Table 4 contrasts the prior and posterior mean and standard
deviation of input model parameters. The shift in the mean
and the reduction in the parameter uncertainties suggest a pos-
terior plume that moves faster than does the prior. For exam-
ple, the median value of Kd decreases from approximately 0.75
l/kg to less than 0.5 l/kg, with a corresponding reduction in
uncertainty. However, in some parameters little change in the
parameter median or uncertainty is observed (e.g., see porosity
TABLE 4. Summary of Prior and Posterior Parameter Mean and Uncertainty

Parameter
(1)

Prior

Mean
(2)

Standard deviation
(3)

Posterior

Mean
(4)

Standard deviation
(5)

% Change in
standard deviation

(6)

Longitudinal dispersivity (=al) (m) 49.7 27.5 64.9 16.4 240
Transverse/longitudinal dispersivity ratio 0.25 0.25 0.22 0.22 212
Vertical/longitudinal dispersivity ratio 0.028 0.026 0.023 0.019 227
Sorption coefficient (=Kd) (l/kg) 0.984 0.794 0.432 0.162 280
Porosity 0.30 0.028 0.29 0.026 27
Near source TCE half-life (years) 12.1 13.1 15.0 12.1 28
Far source TCE half-life (years) 27.4 14.1 22.6 10.7 224
Near source DCE half-life (years) 10.6 12.5 22.2 13.4 17
Far source DCE half-life (years) 24.4 13.9 31.5 10.4 225
Source area concentrations:

Area 1 TCE initial concentration (ppm) 272 212 154 96 255
Area 2 TCE initial concentration (ppm) 18 10.3 28 10.7 14
Area 3 TCE initial concentration (ppm) 0.033 0.026 0.046 0.021 29
Area 1 DCE initial concentration (ppm)a 1,516 1,314 1,131 1,234 26
Area 2 DCE initial concentration (ppm)a 17.2 10 17.7 10.3 13
Area 3 DCE initial concentration (ppm)a 0.032 0.026 0.025 0.021 219
aApplies only to Scenarios 2 and 4, where DCE sources are present (see Table 2).



TABLE 5. Summary of Prior and Posterior (i.e., Before and Af-
ter Chemical Data Update) Probabilities for Hydraulic Conduc-
tivity Field Realizations

Hydraulic
conductivity fields

(1)

Geological
structure

(2)
Prior
(3)

Posterior
(4)

1–3 Anisotropic 30% 77.8%
4–8 Isotropic 50% 21.9%

9 Anisotropic-mean 10% 0.3%
10 Anisotropic-unlikely 10% <0.00%

Note: Hydraulic conductivity fields 1–8 are most likely fields from
head updating. Field 9 is mean hydraulic conductivity field from prior
1,000 anisotropic hydraulic conductivity fields. Field 10 is most unlikely
field from head updating.

in Table 4), suggesting little sensitivity of the model predic-
tions (relative to the observed data) for that parameter.

Table 5 summarizes the prior and posterior probabilities for
the 10 hydraulic conductivity fields evaluated in the updating
procedure. Significant results from this update are as follows:

1. The most unlikely hydraulic conductivity field (Reali-
zation #10) has the smallest posterior probability (effec-
tively zero probability). Hence, the chemical updating is
able to discriminate between reasonable (Realizations
#1–9) and unreasonable hydraulic conductivity fields.

2. The mean anisotropic hydraulic conductivity field (Re-
alization #9) has a very low posterior probability. The
mean anisotropic hydraulic conductivity field represents
a ‘‘best guess’’ hydraulic conductivity field from the hy-
draulic conductivity data (i.e., using ordinary kriging).
However, the updating does not select this field as a
highly likely hydraulic conductivity field for the chemi-
cal transport. One explanation for this is that the mean
hydraulic conductivity field has smooth hydraulic con-
ductivity transitions between adjacent cells, which can-
not capture the abrupt changes in hydraulic conductivity
and the associated increase in macroscale dispersion that
occur in a heterogeneous hydraulic conductivity field.
This suggests that if a mean hydraulic conductivity field
is used, an approach that accounts for additional field-
scale dispersivity is needed (see, e.g., Kitanidis and Vom-
voris 1983).

3. The three anisotropic hydraulic conductivity fields (Re-
alizations #1–3) have a combined posterior probability
of 77.8% (30% prior), while the five isotropic hydraulic
conductivity fields (Realizations #4–8) have a combined
posterior probability of 21.9% (50% prior). Updating us-
ing chemical measurements thus favors the anisotropic
hydraulic conductivity fields as the more likely geolog-
ical structure, which is supported by regional scale stud-
ies conducted at the site (PRC 1992).

Model Projections

As an example of a typical application for the results of the
updated model predictions, 30-year transport projections were
made given current conditions and assuming that a local re-
mediation activity was instituted to contain the sources in Ar-
eas 2 and 3 (migration from sources in the upper and lower
aquifers in Area 1 were contained in 1987). From the 1,200
chemical transport simulations, 42 simulations made up 95%
of the posterior probability. Only these 42 simulations were
evaluated for the model projections. The updating procedure
thus facilitated a significant reduction in the number of sim-
ulations needed to evaluate multiyear, multiscenario chemical
transport projections, without losing much resolution in either
the mean and/or the uncertainty in the projections. Tests were
FIG. 6. Time Series Plots of Posterior TCE Projections With-
out (Dotted Lines) and With (Solid Lines) Aggressive Source
Containment at O-1 (a) and O-2 (b) (see Fig. 1); Thick Lines Rep-
resent Median (50th Percentile of Uncertainty Distribution) Con-
centration and Thin Lines Represent 5th to 95th Percentile
Credible Intervals; Solid Circles Represent Measurements;
Downward-Pointing Arrow Represents Nondetection With Open
Circle Tail at Detection Limit

conducted to ensure that omitting the simulations associated
with the remaining 5% of the posterior probability did not
significantly alter the model projections (see Sohn 1998). Fig.
6 illustrates time series plots of model predictions at O-1 and
O-2 (the locations are identified in Fig. 1). The modeled source
containment in Areas 2 and 3 results in notable reductions in
ground-water concentrations only at O-1, the observation point
closest to the contained source; yet even here the predicted
median concentrations are within the uncertainty bounds for
the no-containment case. These results are illustrative of the
types of insights that can be achieved regarding remediation
options, their uncertainty, and the need and potential value of
further uncertainty reductions.

CONCLUDING REMARKS

This work investigated the application of Bayes Monte
Carlo methods to complement site characterization and re-
medial investigation studies. The paper demonstrates methods
for appropriately incorporating available data in Bayesian up-
dating and indicates the type and degree of uncertainty reduc-
tion that can be achieved by following these procedures at a
real hazardous waste site.

Appropriate updating procedures vary depending on the in-
tended use of the updating and possible data correlations. A
two-stage flow and transport modeling and updating procedure
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was followed in this application. Flow predictions were up-
dated using average observed hydraulic head gradients to
achieve an initial reduction in the uncertainty of the hydraulic
conductivity structure. Transport predictions were updated us-
ing chemical concentration data and their statistics selected so
as to minimize the effects of temporal and spatial correlations.
For this purpose, an approach was introduced that accounts for
spatial correlation in the observed data by reducing the effec-
tive sample size.

The chemical data updating resulted in uncertainty reduc-
tions in most transport and reaction rate parameters, with re-
ductions in standard deviations for all but three of the param-
eters, ranging 6 to 80%. Significant increases in posterior
model probabilities associated with selected scenarios reduced
the uncertainty in the considered alternatives as well. For ex-
ample, the probability for the anisotropic hydraulic conductiv-
ity structure increased from a prior of 30% to a posterior of
78%. Similarly, the hypothesized presence of DCE solely as a
by-product of TCE degradation was further supported by an
increase in the probability of TCE-only source models from
50 to 71%.

The model projections with and without further remediation
demonstrate a natural application of the results of the updating.
Since 95% of the posterior uncertainty could be characterized
by evaluating the 42 most significant realizations, out of a total
prior set of 1,200, the updating procedure allowed for a sig-
nificant reduction in the computational burden needed to eval-
uate multiyear, multiscenario chemical transport projections.

Possible candidate applications for this approach include (1)
sites with long-term monitoring plans where successive up-
dating would improve model predictions and uncertainty es-
timates; (2) sites where extensive field data are available to
improve Monte Carlo simulation predictions; and (3) studies
that require comprehensive site characterization where Bayes
updating can be used to identify further data collection that
can most effectively reduce overall uncertainty.
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APPENDIX II. NOTATION
The following symbols are used in this paper:

c̄m = mean of model predictions;
c̄o = mean of observed (ln) concentrations;
Kd = sorption coefficient;

L( ) = likelihood;
N = sample size;
O = observation;

p(Yk) = prior probability mass for model output Yk;
p9u = posterior probability mass for realization u;

V, Y = model output or input parameter;
a = dispersivity;

m9 = posterior mean;
r, r = correlation coefficient;

r9 = posterior correlation coefficient;
s2 = variance of measurement error; and

s92 = posterior variance.


